skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tarin, Tonantzin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Soil nitrogen (N) is an important driver of plant productivity and ecosystem functioning; consequently, it is critical to understand its spatial variability from local-to-global scales. Here we provide a quantitative assessment of the three-dimensional spatial distribution of soil N across the conterminous United States (CONUS) using a digital soil mapping (DSM) approach. We used a random forest-regression kriging algorithm to predict soil N concentrations and associated uncertainty across six soil depths (0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm) at 5 km spatial grids. Across CONUS, there is a strong spatial dependence of soil N, where soil N concentrations decrease but uncertainty increases with soil depth. Soil N was higher in Pacific Northwest, Northeast, and Great Lakes National Ecological Observatory Network (NEON) ecoclimatic domains. Model uncertainty was higher in Atlantic Neotropical, Southern Rockies/Colorado Plateau and Southeast NEON domains. We also compared our soil N predictions with satellite-derived gross primary production (GPP) and forest biomass from the National Biomass and Carbon Dataset. Finally, we used uncertainty information to propose optimized locations for designing future soil surveys and found that the Atlantic Neotropical, Pacific Northwest, Pacific Southwest, and Appalachian/Cumberland Plateau NEON domains may require larger survey efforts. We highlight the need to increase knowledge of biophysical factors regulating soil processes at deeper depths to better characterize the three-dimensional space of soils. Our results provide a national benchmark regarding the spatial variability and uncertainty of soil N and reveal areas in need of a better representation.</p></p>This dataset includes all covariates used for modeling soil Nitrogen, the training data, and the modeling output. The output represents raster files at 5km resolution of soil N at different depths and associated model uncertainty.</p></p>Main reference:</p>Smith EM, Guevara M, Tarin T, Pouyat R, Vargas R. Spatial variability and uncertainty of soil nitrogen across the conterminous United States (in review). Ecosphere.</p> 
    more » « less
  2. Schwartz, Russell (Ed.)